skip to content

Selected projects

The ideas of the key profile area are implemented in numerous individual projects, such as master's theses, whose topics are interdisciplinary and whose supervisors come from different departments.

In addition, the KPA can support projects with its own financial resources. In April 2023, the first projects (KPA 001 - KPA 006) have been selected for this. Since the end of 2023, KPA 007 to KPA 012 have also been supported.

KPA 001 (started)

Prof. Dr. Andreas Vogelsang - Informatik - Software and System Engineering

Evaluating Software Quality of Research Software

Software becomes more and more important to research. (…) We are interested in inspecting which software development best practices are applied and which relevance code quality has in research software. The results will give insight into current code quality and provide possibilities for improvement of the quality and correctness of the programs used. More specifically, we want to answer the following research questions:

  • RQ1: Which role does code quality currently play in research software?
  • RQ2: How “good” is research software in comparison to other open-source (and commercial) software?
  • RQ3: How can we improve productivity and code quality in research software? By answering these three research question, we will be able to identify further topics that will investigate further as part of KPA initiatives or offer as training for researchers.

 

KPA 002 (started)

Prof.'in Dr.'in Christina Bogner – Geographie - Ökosystemforschung

Establishing a modelling framework for agent-based models

with  Marijn van der Meij, Tim Reichenau, Andreas Bolten, Tony Reimann, Georg Bareth, and Karl Schneider

Agent-based models (ABMs) are known as a tool to model interactions between human agents in economics (Farmer and Foley, 2009) or social sciences (Bankes, 2002) or human-environment interactions (An, 2012). It is one of the methods to approach complex systems. Some even call them “a bridge between disciplines”‘ (Axelrod, 2006). ABMs are related to game theory; however, they can encompass more complex behaviour. Given their power to approach complex systems, we feel that ABMs should be part of the KPA’s repertoire of models to help answering pertinent questions relating to human-environment interactions within the Earth System Sciences. Eventually, ABMs could even be a link between the KPAs “Social and Economic Behavior” and “Intelligent Methods for Earth System Sciences”. ABMs require a thorough implementation to run at a reasonable speed. The (relatively) new language for data analysis, Julia (https://julialang.org/), promises such a framework for a successful implementation (https://github.com/juliadynamics/Agents.jl/). Thus, we suggest trying Julia’s capacity to provide a framework to implement ABMs. As a case study, we will use the research questions arising in the project A05 “Future roads” in the CRC 228 related to land-use change and development of a road network.

References

  • Farmer, J. D. and D. Foley (Aug. 2009). “The Economy Needs Agent-Based Modelling”. In: Nature 460.7256, pp. 685–686. issn: 1476-4687. doi: 10.1038/460685a. (Visited on 04/17/2023).
  • Bankes, S. C. (May 2002). “Agent-Based Modeling: A Revolution?” In: Proceedings of the National Academy of Sciences 99.suppl 3, pp. 7199–7200. doi: 10.1073/pnas.072081299. (Visited on 04/17/2023).
  • An, L. (Mar. 2012). “Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models”. In: Ecological Modelling. Modeling Human Decisions 229, pp. 25–36. issn: 0304-3800. doi: 10.1016/j.ecolmodel.2011.07.010. (Visited on 04/17/2023).
  • Axelrod, R. (Jan. 2006). “Chapter 33 Agent-based Modeling as a Bridge Between Disciplines”. In: Handbook of Computational Economics. Ed. by L. Tesfatsion and K. L. Judd. Vol. 2. Elsevier, pp. 1565–1584. doi: 10.1016/S1574-0021(05)02033-2. (Visited on 04/17/2023).

 

KPA 003 (started)

Prof.'in Dr.'in Christina Bogner – Geographie - Ökosystemforschung

Establishing and testing a digital lab notebook

with Stephan Opitz

Electronic lab notebooks (ELN) are an important tool to ensure data safety and reproducibility of experimental results in a lab. It is part of a thorough research data management (https://fdm.uni-koeln.de/serviceangebot/servicekatalog-1). At the Faculty of Mathematics and Natural Sciences, we have the opportunity to test the software eLABJOURNAL. In this proposal, we suggest to test eLABJOURNAL in the Laboratory of the Institute of Geography within the working group Ecosystem Research and to report whether this software can be used more broadly within the KPA to e.g., exchange protocols between different working groups and coordinate our technical infrastructure (Großgeräte) more efficiently.


 

KPA 004 (started)

Prof.'in Dr.'in Christina Bogner – Geographie - Ökosystemforschung

Establishing a framework for development of Shiny Apps for teaching

with Andreas Bolten

Shiny apps written in R (https://shiny.rstudio.com/) are interactive web apps. They can be used to teach e.g., statistics (https://stattlc.com/2021/08/17/ooh-shiny-r-shiny-apps-as-a-teaching-tool/) to beginners or for serious applications like reporting about systematic literature search according to PRISMA (https://estech.shinyapps.io/prisma_flowdiagram/.) We suggest (i) developing shiny apps for teaching within the KPA and (ii) creating teaching material that can serve to teach students to program such apps themselves. In order to deploy Shiny apps, a Shiny server is needed. To setup it, we kindly request the assistance of the KPA and in particular from Dr. Katja Sperveslage.


 

KPA 005 (started)

Prof.'in Dr.'in  Tatiana von Landesberger – Informatik – Visualisation and Visual Analytics

Dashboard Visualization for Atmospheric Rivers

The visualization of meteorological data requires effective and efficient interaction possibilities. Meteorological data have specific characteristics to be taken into account. Especially multiple aspects of data measurements on arctic atmospheric rivers. The use of visualization for publication purposes – in papers or online – requires a high amount of data accessibility and readability provided through a high number of filters and display options.

Our goal is to develop, implement and evaluate a novel dashboard visualization on meteorological data as well as to improve the given dashboard on atmospheric rivers designed during the “Visual Analysis Lab”. The output of the project can be used by all researchers in KPA.


 

KPA 006 (started)

Prof. Dr. Tony Reimann - Geographie – Geochronologie und Geomorphologie

Design and implementation of a soil-sediment database system for complex geoscientific and spatial data

Due to progress in experimental technology and computational processing, geoscientific research produces increasingly more and more complex data from an increasing number of various sources and methods.(…) In Geosciences, placing observations in their spatial context is very important. (…) A modular and scalable database system deployed on the organisational level of an institute-wide laboratory rather than a research project, may help overcome the aforementioned challenges. The proposed project seeks to develop an integrated database system for geoscientific research that integrates the data management in the course of the research process from fieldwork documentation to laboratory results. Moreover, collaboration between research groups of the Institute for Geography (mainly AG Bareth, AG Bogner, AG Mansfeldt, AG Schneider, AG Reimann) and participants of the Key Profile Area (KPA) (e.g. AG Dunai, AG Grunert, AG Melles and others) will be explored. The goals of database system development are to:

  • provide long-term storage of research data and metadata beyond the organisational and temporal limits of individual projects,
  • simplify fieldwork and laboratory documentation,
  • allow simple and comprehensive query of data records across different projects, spatial and temporal scales, using programming interfaces,
  • be modular and scalable and
  • fulfil the requirements of the DFG

 

KPA 007 (started)

Dr. Claudia Acquistapace - Meteorologie - Extreme weather events

New ground-based dataset input for developing a new machine learning self-supervised classification approach to identify cloud regimes.

Cloud mesoscale organization is crucial in determining cloud response to climate change, especially in the tropical region. Self-supervised machine learning (MLSV) method applied to satellite data successfully classifies cloud regimes in the trades during the EUREC4A campaign (Chatterjee et al., 2023). However, it still does not exploit the information from different observing geometries, like ship-based profiling observations. Model studies show that the evaporation of precipitation can play a crucial role in cold pool development, altering cloud spatial patterns and organization. We suggest preparing precipitation's evaporation rate (ER) measured from ship-based observations (Acquistapace et al., 2021) as input for MLSV. We will calculate ER by applying the method described by Tridon et al., 2017. First, we will use the mean cloud ER to understand better cloud regimes obtained using only satellite data. Finally, we will test the feasibility of including such data as input for the MLSV algorithm, hopefully revealing a new potential extension of the MLSV method that could benefit various applications and diverse scientific goals in intelligent methods for earth sciences.


 

KPA 008 (started)

Dr. Yannick Bussweiler - GeoMuseum

Digitization of the GeoMuseum's teaching collection

The GeoMuseum of the Institute of Geology and Mineralogy at the University of Cologne is home to a large collection of rocks, minerals and fossils. Some of these pieces are exhibited in the museum room and are open to the public. However, most of the pieces are kept in the museum's storage rooms. This includes an extensive teaching collection of sedimentary, igneous and metamorphic rocks, which have been used extensively for teaching in the past. Our aim is to increase the attention of our lecturers at the institute (and possibly beyond) to the teaching collection by digitizing it. 

A photogrammetry laboratory is currently being set up on the premises of the GeoMuseum for digitization (with funds from the Albertus Magnus Teaching Prize 2023, among others). We expect to be able to start recording the teaching collection (around 350 items) in the new year. For this purpose, the pieces will first be weighed, then photographed (from several perspectives to create a 3D model) and described petrographically. The data and information will be entered into a digital database and then shared with all lecturers at the institute.


 

KPA 009 (starting soon)

Prof. Dr. Tibor Dunai - Geology 

Tropical Change - Environmental change in the humid tropics during major climate transitions

 


 

KPA 010 (21-25 May 2024)

Prof. Dr. Tibor Dunai - Institut für Geologie & Mineralogie

Workshop COSMO 2024 "Pushing the boundaries of cosmogenic nuclides"

We support the COSMO 2024 workshop in Cologne (21-25 May 2024). This workshop is part of a biannual series of workshops, which developed from the ‘Nordic workshop on cosmogenic nuclides’ (last held in Norway 2018, 4NWCN, Bergen University), into a Pan-European workshop. After a corona-related break, the last workshop COSMO 2022 was hosted jointly by the University of Edinburgh and the University of Glasgow, UK. The convenors for COSMO 2024 in Cologne are Steven Binnie (UoC), Tibor Dunai (UoC) and Hella Witmann-Oelze (GFZ-Potsdam).
The scope of the workshop is to present and discuss novel developments in cosmogenic nuclide methodologies and applications to earth surface system sciences. This field of geochronometry has grown over the last several decades to become well recognised and established within the broader Earth Science community, and the broadening remit and increased profile of this workshop series reflects this. Workshop participants (usually 60-70) are international (usually > 25% from outside Europe; based on expressions of interest received, also expected for COSMO 2024), and represent a gender equitable balanced mix from early career scientists to seasoned experts.


 

KPA 011 (starting in 2024 - probably in May)

Prof. Dr. Christina Bogner und Prof. Dr. Javier Revilla Diez - Geographisches Institut

Workshop zum Thema "Approaching complex systems: How do qualitative and quantitative methods contribute to climate change adaptation research?"

As our planet is challenged by manifold crises, concepts like complex systems and systems thinking are fundamental for many disciplines in the KPA and beyond. However, different disciplines have their own understanding and way to treat those concepts. In practice, systems thinking includes a broad array of qualitative and quantitative methods and tools designed to better understand system behaviours and intervene in the context of complexity and uncertainty. We suggest a workshop where these concepts can be discussed focusing on climate change adaptation. We aim at inviting experts from both, quantitative and qualitative areas to work intensively on controversial statements (part of the concept of the workshop which will be developed and sent to participants beforehand). This workshop will bring together different disciplines and intensify KPA’s links outside the Faculty and University, thus  increasing its national and international visibility.


 

KPA 012 (5./6.2.2024)

Prof. Dr. Christian Sohler - Abteilung Informatik - Algorithmen und Komplexität

Workshop zum Thema "Algorithmic Aspects of Neural Networks"

The goal of this workshop is to bring together experts in Theoretical Computer Science and Machine Learning and discuss recent developments on Algorithmic Aspects of Neural Networks and related topics. The workshop will take place on February 5th/6th in the main university building.

Schedule and speaker see here.
 


 

30.12.2022

Master thesis "Graph-based clustering of cloud images"

Due to the influence of different cloud types on the earth's climate and steadily increasing data volume, an automated classification of satellite images of different cloud types is of growing interest. Motivated by this, a new method for clustering cloud images was developed in the interdisciplinary master thesis (computer science and meteorology) of Sebastian Zaun (Institute of Computer Science, AG Prof. Dr. Sohler). Our method divides the input images into smaller square patches to compare the occurrence of different patterns in the different images. In this process, the input images as well as the patches are interpreted as lattice graphs. To perform the clustering of the images, we defined a new distance measure for these images, which is defined by combining an approximation of the graph edit distance and the Wasserstein distance. The former is used to calculate the distance between patches, while the latter is used to compare the occurrence of individual patches in different images. We tested the method on a cloud optical depth image dataset over central Europe.


 

13.07.2022

Master thesis to "Visualization and Visual Analytics"

The interdisciplinary master thesis (Computer Science and Meteorology) from Daniel Braun (Institute of Computer Science, working group Visualisation and Visual Analytics) presents a novel color scheme designed to address the challenge of visualizing data series with large value ranges, where scale transformation provides limited support. We focus on meteorological data, where the presence of large value ranges is common. We apply our approach to  meteorological scatterplots, as one of the most common plots used in this domain area. Our approach leverages the numerical representation of mantissa and exponent of the values to guide the design of novel “nested” color schemes, able to emphasize differences between magnitudes.

The whole paper Color Coding of Large Value Ranges Applied to Meteorological Data is here (Arxiv) and the method that is developed and implemented in a python library is here (github).


 

Dagstuhl Seminar 

In Schloss Dagstuhl the Seminar Computational Geometry of Earth System Analysis (23342) takes place from 20 August to 25 August 2023 statt. The organizers are Susanne Crewell (University of Cologne, DE), Anne Driemel (University Bonn, DE) and Jeff M. Phillips (University of Utah - Salt Lake City, US). This Dagstuhl Seminar will bring together computational geometers and meteorologists and will provide a forum to discuss the unique computational challenges that meteorologists are dealing with and how the geometry underlying the input data can be exploited to obtain efficient algorithms. Concrete problem areas that could greatly benefit from synergies between the two research areas include (1) data assimilation of weather-related measurements for numerical simulation, (2) tracking and clustering of moving atmospheric features, and (3) the planning and optimization of sensor placements.