zum Inhalt springen

Workshop Computer Science

Workshop "Algorithmic Aspects of Neural Networks" am 5./6.2.2024 fand in Köln organisiert von der IT statt

The goal of this workshop was to bring together experts in Theoretical Computer Science and Machine Learning and to discuss recent developments on Algorithmic Aspects of Neural Networks and related topics. The workshop took place on February 5th/6th in the main university building.

Organizer:   

  • Christian Sohler (University of Cologne)

Schedule:

Monday, 5th February

10:00-10:50  Registration
10:50-11:00  Welcome
11:00-11:30  Sitan Chen (Harvard University) - Provably learning a multi-head attention layer
11:30-12:00 Amir Zandieh (Independent Scientist) - Long-Context Attention in Near-Linear Time
12:00-12:30 Varun Kanade (University of Oxford) - In-context learning: A case study with learning discrete functions
12:30- 14:00  Lunch break
14:00-14:30  Vincent Cohen-Addad (Google Research) - Sensitivity Sampling for Coreset-Based Data Selection
14:30-15:00 Dan Feldman (University of Haifa) - Coresets for network compression
15:00-15:30 Coffee break
15:30-16:00 Silvio Lattanzi (Google Research) - Clustering with ML Advice
16:00-16:30  Piotr Indyk (MIT) - A Near-Linear Time Algorithm for the Chamfer Distance
16:30-17:00   Coffee Break
17:00-18:00  Open Problems and discussions

Tuesday, 6th February

09:00-09:30 Sandra Kiefer (University of Oxford) -The Combinatorial Side of Graph Neural Networks
09:30-10:00  Christopher Morris (RWTH Aachen) - Generalization Abilities of Graph Neural Networks
10:00-10:30    Aleksandar Bojchevski (University of Cologne) - Machine Learning with Guarantees
10:30-11:00   Coffee Break
11:00-11:30  Michael Kapralov (EPFL) -  A Quasi-Monte Carlo Data Structure for Smooth Kernel Evaluation
11:30-12:30  Goran Zuzic (Google Research) - A Simple Boosting Framework for Transshipment
12:30-14:00 Lunch break
14:00-14:30           Vladimir Braverman (Rice University) - FetchSGD: Communication-Efficient Federated Learning with Sketching
14:30-15:00 Ameya Velingker (Google Research) - Oversquashing in Graph Neural Networks
15:00-15:30 Alexander Munteanu (TU Dortmund) - Bounding the Width of Neural Networks
15:30-16:00 Coffee Break
16:00-16:30  David Woodruff (CMU) - On Approximating an Entrywise Transformed Matrix Product
16:30-17:00   Artur Czumaj (University of Warwick) - Testing Neural Networks
17:00-18:00  Open Problems and discussions